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INTRODUCTION 

It is well known that the solution of the diffusion equation for an electromagnetic 
field with a time harmonic term, e im,  is in the form of a traveling wave whose amplitude 
attenuates over distance into a conducting medium. As the attenuation is an increasing 
function of frequency, the high frequency components attenuate more rapidly than those 
of low ones upon entering a well conducting object. At the same time, the phase velocity 
of an individual component is also an increasing function of frequency causing a 
broadening of the pulse traveling inside a conductor. In the results of our previous study 
of numerical simulations [ 11, the problem of using a gaussian input pulse was 
immediately clear. First, having the dominant frequency components distributed around 
zero, the movement of the peak was not well defined. Second, with the amplitude of 
fourier components varying slowly over a wide range, the dispersion-induced blurring of 
the peak position was seen to be severe. 

For the present study, we have used a gaussian modulated single frequency 
sinusoidal wave, i. e., the carrier, as an input pulse in an effort to improve the issues 
related to the unclear movement of peak and dispersion as described above. This was 
based on the following two anticipated advantages: First, the packet moves in a conductor 
at the group velocity calculated at the carrier frequency [2 ] ,  which means it is well 
controllable. Second, the amplitude of frequency components other than that of the 
carrier can be almost negligible, such that the effect of dispersion can be significantly 



reduced. A series of experiments of transmitting electromagnetic pulses through 
aluminum plates of various thickness was performed to test the validity of the above 
points. The results of numerical simulation based on wave propagation are discussed 
with respect to the experimental results. Finally, a simple simulation was performed 
based on diffusion of a continuous sine wave input and the results are compared with 
those of a single frequency sinusoidal wave observed over time at difference locations 
inside a conductor. 

NUMERICAL SIMULATION BASED ON WAVE PROPAGATION 

The input pulse used was a gaussian modulated cosine wave of the following 
expression: 

~ ( z  = 0,t) = Woe - t2 /L2  COSW,t (1) 

The general solution can be constructed by performing the following integral: 
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permeability. The full expression is then obtained to be 
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Using o = 1.73 x 107Siemens/meter for aluminum 2024 alloy and p = 4n: x 
Weber/Amp-meter, the solution ~ ( z ,  t )  was obtained by numerical integration. The 
complete solution can be represented as a field distribution over time at given locations or 
that over distance at given times. 

Fig. 1 shows the field distribution over time at z = 0 for the gaussian wave packets 
with carrier frequencies of 0.5 and 1 kHz. The distribution for two different frequencies 
at z = 5 mm is shown in Fig. 2. The phase velocity of a single frequency component is 

proportional to (2%p)112. Hence, the delay time for detecting the peak at a given 

location inside the conductor, which in this case is aluminum 2024 filling one half of the 
infinite space, should be proportional to n. Details related to wave propagation in 
metallic conductor can be found in Ref. 3. 

In Fig. 2 it is shown that the main peak of a 1 kHz packet appears at z = 10 mm 
earlier than the peak of 0.5 kHz does. It is also seen that there is no noticeable dispersion 
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Fig. 1. The field amplitude distribution over time at z = 0 for tone burst signals of 0.5 
kHz (a) and 1 kHz (b). 
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Fig. 2. The field amplitude distribution over time at z = 10 mm for tone burst signals of 
0.5 kHz (a) and 1 kHz (b). 

of the packet after advancing 10 mm in aluminum. Such findings from the results of the 
simulation are consistent with the original expectation. 

EXPERIMENT AND RESULTS 

A simple experiment was performed to test the validity of the solution obtained 
by integrating equation (2). The experimental setup consisted of a drive coil and a giant 
magnetoresistance (GMR) sensor. The advantage of using a GMR sensor is that it 
measures the field amplitude rather than the time rate of change in field amplitude. 
Therefore, the use of a GMR sensor enables measurements at very low frequency such as 
0.5 kHz or even lower. A function generator providing tone burst signals was used to 
activate the drive coil. A set of aluminum plates with a cross-sectional area of 30 x 30 
cm2 were used to simulate the varying thickness of conducting plate. The signals were 
sensed at the opposite side of the plates with respect to the drive coil. Fig. 3 shows two 
waveforms; one taken without a sample and the other taken with a 0.813 rnm thick 
aluminum sample placed between the drive coil and the GMR sensor. The time delay 



due to the presence of the metallic specimen was measured as the difference between the 
locations of the first zero crossings observed with and without the specimen. 
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Fig. 4 (a) shows the time delay as a function of composite thickness of aluminum 
plates for two difference carrier frequencies of tone burst signals, i. e., 0.5 and 1 kHz. It 
is interesting to note that all the aluminum plates used, except one, were coated with an 
Alcad layer which has a conductivity that is considerably higher than that of typical 
aluminum alloys. Whenever the uncoated aluminum plate was used to form a desired 
thickness, the delay time dropped as seen at 3.58 and 4.83 mm. Fig. 4 (b) shows the 
frequency dependence of time delay through 1.016 and 2.032 mm thick aluminum plates. 
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DISCUSSION 

According to the phase velocity of a single component given in the previous 
section, if the field propagates as a traveling wave, the delay time of a 0.5 kHz tone burst 
should be longer than that of a 1 kHz tone burst by a factor o f 4  at any plate thickness. 
The results of Fig. 4 (a) do not provide strong evidence for this. Also, the results in Fig. 

4 (b) do not show the frequency dependence of f-x as expected from the phase velocity 
of a traveling tone burst. Hence, one can say that the results follow the overall trend 
which is consistent with the prediction based on wave propagation but the agreement is 
insufficient to clearly support the validity. Of course, the presence of the Alclad coating 
will add more complication to this. Nevertheless, as will be shown later, the exact 
functional form is not a significant issue. 

Assuming that the field variation is based on wave propagation, one can calculate 
the characteristic impedance in aluminum as 
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Fig. 3. Magnetic field distribution over time as detected by a GMR sensor with (a) only 
an air gap and (b) 0.8 12 mm thick aluminum sample placed between the drive coil and 
sensor. 
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Fig. 4. (a). The delay time as a function of aluminum plate thickness for two carrier 
frequencies and (b). the delay time as a function of frequency for two different aluminum 
plate thickness for two plate thickness; 1.02 mm (circle) and 2.04 mm (square). 'r = 2 . 1 4 ~ 1 0 - ~ L 2  
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at 1 kHz. When compared with the characteristic impedance in vacuum, which is well 
approximated as to be that in air [3], 

z=($ =37752, 

it is clear that there exists an enormous impedance mismatch at the air/aluminum 
interface. Such a vast difference in the characteristic impedance will certainly cause 
almost complete reflection of waves at the interface, and, in principle, it should not be 
possible to transmit even a minute amount of field energy in a metallic conductor. 
Nevertheless, the experiments proved that the field energy transmits very well and there 
was no indication of any reflection at interfaces. 

As given in the previous section, the wavelength is 3.4 and 2.4 cm at 0.5 and 1 
kHz, respectively. These wavelengths are far larger than the thickness of the aluminum 
plates used in this experiment and the spatial variation of field amplitude within the plate 
can be neglected, leaving only the time dependent phase factor, eiw , effective. Under 
such condition, the traveling wave characteristics are lost and the complete absence of 
reflection at the interfaces is explainable, and the experiment does not invalidate the 
nature of wave propagation. Such an unclearness provided a reason to investigate the 
properties of diffusing fields, the details of which are given in the following section. 



NUMERICAL SIMULATION BASED ON DIFFUSION 

As the experimental results of the previous section neither prove nor disprove the 
validity of the wave characteristics of electromagnetic tone bursts penetrating aluminum 
plates, it is appropriate to investigate the characteristics of diffusing fields. A numerical 
simulation was, hence, performed and the details are given in this section. The 
appropriate mathematical expression for this is found in Ref. 4 as follows: 

I 

where u = yfi. The external disturbance occurs over time z and the upper limit of the 

integral is to ensure that only the disturbance which has occurred up to a given time t 
influences the event observed at that time. 

For the sake of simplicity and clarity in comparing the results based on the wave 
propagation and diffusion mechanism, the disturbance, ~ ( t ) ,  is chosen to be a continuous 
function of time, i. e., sin mot. The results for 0.5 and 1 kHz are presented in Fig. 5 as the 
field distribution over time at various locations inside an aluminum alloy 2024 filling one 
half infinite space. It can be clearly seen in both cases that it takes finite time for the field 
distribution to reach the steady state at a given location inside the metal. It is also 
interesting to notice that the field amplitude seen at a location is lower at 1 kHz compared 
to 0.5 kHz showing that a slowly varying field penetrates deeper into a conducting 
medium. This is exactly the same phenomenon as the temperature change under the 
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Fig. 5. Amplitude distribution of oscillating diffusing field over time observed at various 
locations (z = 3,5,8,10 and 15 mm in aluminum) for (a) 0.5 kHz and (b) 1 kHz. The 
field amplitude decreases sequentially from that observed at z = 3 mm to that observed at 
z=15mm.  



earth’s surface which reflects the seasonal variation rather than the daily fluctuation. In 
addition, the field amplitude apparently is a decreasing function of distance into the 
metal. Nevertheless, such a frequency and travel distance dependence of field amplitude 
is similar to what is expected from traveling wave propagating into a conductor. Fig. 6 
shows the field distribution of single frequency waves of 0.5 and 1 kHz over time at the 
same locations of Fig. 5. 

Clearly, with the only exception of the diffusing field at the initial stage, these two 
results are identical. On one hand, one may feel that it is remarkable to obtain such 
identical results using two different approaches. On the other hand, one can see that it is 
not surprising at all to obtain the same time and spatial dependence of the field inside a 
conductor for the two approaches since they are merely based on different interpretation 
of a single equation. 

CONCLUSION 

The present study proves experimentally that it is possible to transmit 
electromagnetic tone burst of 0.5 and 1 kJ3z through a bulk aluminum plate several 
millimeters thick. The arrival time and shape of the tone burst signal transmitted through 
aluminum plates are seen to be consistent with what is predicted from the damped 
traveling wave. It is, however, clear that there exist no useful traveling wave 
characteristics since the field inside an aluminum plate is almost static in nature and the 
large impedance mismatch at interface is meaningless. The most notable 
accomplishment of the present study is the discovery of the identical behavior of damped 
traveling wave and the oscillating diffused field. 
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Fig. 6.  Amplitude distribution of monochromatic traveling wave over time observed at 
various locations (z = 3,5,8, 10 and 15 mm in aluminum) for (a) 0.5 kJ3z and (b) 1 kHz. 
As in Fig. 6,  the field amplitude decreases sequentially from that observed at z = 3 mm to 
that observed at z = 15 mm. 



REFERENCES 

1. M. Namkung, B. Wincheski, S. Nath and J. P. Fulton, Review of Quantitative 
Nondestrcuctive Evaluation, Vol. 18A, 523, edited by D. 0. Thompson and D. E. 
Chimenti (Plenum Press, New York, 1999). 1 

2. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1975). 
3. P. Lorrain, D. R. Corson and F. Lorrain, Electromagnetic Fields and Waves, 3rd ed., 

(W. H. Freeman and Company, New York, 1988). The general approach to the 
subject given in this textbook is perfectly valid for the case of electromagnetic field 
entering a metallic media filling one half of infinite space. The present situation, 
however, deals with aluminum plates with thickness of a few millimeters and the 
traveling wave characteristics from general approach would not be valid. 

4. E. Butkov, Mathematical Physics (Addison-Wesley, Menlo Park, 1968). 


